Библиотека\Александр Гордон\Регресс в эволюции многоклеточных

Регресс в эволюции многоклеточных

Участник:

Владимир Вениаминович Алёшин – кандидат биологических наук

Александр Гордон: И поэтому когда я готовился к сегодняшней программе и увидел название темы, вдруг эта простая лестница или филогенетическое древо, как мы его себе представляем, стало у меня, как под ветром, гнуться, путаться. Я уже на самом деле не понимаю: если возможен регресс в эволюции живых существ, причём сложных, многоклеточных, то что такое тогда эволюция?

Владимир Алёшин: Действительно, независимо от того, чему нас учили в школе на уроках биологии, мы могли бы задуматься над тем, чему нас учили на уроках физики. Для того чтобы возникла или поддерживалась сложная структура, мы должны затратить энергию на её консервацию. Тепловое движение молекул, космические лучи, ошибки при репликации – всё это энтропийные факторы, которые неизбежно приводят к мутациям. Они стремятся разрушить сложную структуру. И они её разрушат во всех тех случаях, когда не будет затрачена энергия на её поддержание. Это энергия – тела живых существ, погибших в ходе стабилизирующего отбора, движущего отбора. И как только угасает алтарь жертв, которые приносит вид, эта форма разрушается.

А.Г. Мы же не видим вещи в их развитии, мы видим либо установившиеся виды, либо некие формы, которые не позволяют нам судить о том, как был этот вид устроен давно. Так что, наряду с развитием, оказывается, есть ещё один движущий фактор эволюции – регресс.

В.А. Я бы не назвал регресс движущим фактором. Регресс – это результат действия энтропийных факторов, мутагенеза. Или, может быть, ещё каких-то факторов, которые мы сейчас должны заново переосмыслить, потому что мы столкнулись с бесспорными результатами регресса не только среди паразитических животных, которые были описаны раньше, которые не вызывают удивления у специалистов, но и у свободно живущих животных. Это многочисленные свидетельства очень глубокого регресса. И мы видим, что благородная идея, что эволюция обязательно ведёт к прогрессу. И она оказывается ложной. Часто это приводит к регрессу.

А.Г. Ну, тогда я не понимаю действие отбора. Ведь нас учили, что как только возникает вредная попытка регресса, вот то самое разрушение, о котором вы говорите, отбор должен сделать всё, чтобы отбраковать этот экземпляр и не дать возможности ему передать свои гены в следующее поколение. Вы же говорите об устойчивой передаче этих мутаций до такой степени, что вид просто разваливается на некое примитивное существо.

В.А. Очевидно, все случаи регрессивной эволюции не противоречат действию отбора, видимо, в некоторых случаях потеря тех или других органов не сказывается на приспособленности организма. Давайте я вам покажу картинки, чтобы было легче понять, о чём я говорю.

А.Г. С удовольствием. Вот одна уже появилась, я вижу.

В.А. Тут мы видим личинку асцидии, которая представляет собой настоящее хордовое животное. Дальше эта личинка садится на субстрат и теряет подвижный хвост, в котором хорда, мышцы…

А.Г. И превращается…

В.А. И превращается во взрослую асцидию. Таким образом, её индивидуальное развитие регрессивно. Как это развитие возникло? Каковы были предки асцидии? Можно предполагать, что они были похожи на эту личинку и в дальнейшем признаки хордовых остались только личиночными. И это путь регрессивного развития. Можно, правда, выбрать и другой сценарий. Такой, что у сидячих животных расселительные личинки оказались той основой, на которой возник тип хордовых.

Эта лепёшка – трихоплакс. Они изредка появляются в морских аквариумах и выглядят, как налёт грязи на стекле. Вот мы видим разрез её, прошу задержать эту картинку. На срезе видно лишь два слоя клеток. Этот трихоплакс выглядит, как пирожок с двумя слоями эпителиальных клеток и тоненькой начинкой отростчатых клеток. У него нет ни переднего, ни заднего конца. Тем не менее, это многоклеточное животное. Живёт он так – наползает на скопление бактерий или водорослей, в образовавшуюся щель изливает пищеварительные ферменты, ну а потом переползает на следующее место.

Когда-то трихоплакс был очень знаменит, как вероятный предок всех многоклеточных. Потому что это, на самом деле, может быть одно из наиболее просто устроенных многоклеточных животных. У него нет ни одного органа – ни рта, ни кишечника, ни органов чувств, ни мышечных, ни нервных клеток. И поэтому он казался возможным предком – так, как и некоторые другие многоклеточные животные. Вот схема строения одного из таких животных – ортонектиды. Это червячок, у которого покровы представлены однослойным эпителием. И этот мешочек заполнен гомогенным продуктом, гаметами, яйцеклетками или сперматозоидами, в зависимости от того, какой экземпляр попался. И всего лишь несколько волокон мышечных идут вдоль тела этого животного. Рождается ортонектида из гигантской клетки, плазмодия, который прорастает в ткани беспозвоночных, афиур, немертин, моллюсков и некоторых других.

Похожи на ортонектид дециемиды. Это тоже паразитические существа со сложным жизненным циклом. Слева легко рассмотреть устройство дециемиды. Это гигантская осевая клетка, несколько миллиметров длиной, с одним ядром и покрыта чехлом ресничных клеток. В цитоплазме осевой клетки лежат генеративные клетки и эмбрионы на разных стадиях развития, которые по мере созревания также покидают тело дециемиды. С одной стороны, это существо многоклеточное. С другой стороны, здесь все клетки счётные, нет никаких органов чувств и нет специализированных клеток, которых можно ожидать в многоклеточном животном, – мышечных или нервных. Когда-то дециемиды, ортонектиды, трихоплакс – все эти организмы были очень знаменитые, потому что казались предками многоклеточных животных.

Можно переформулировать нашу задачу таким образом. Как нам ориентировать ряд от простых форм, примеры которых мы видели, к сложным? Или наоборот. Оказалось, что в этом нам могут помочь макромолекулы, которые имеются у всех многоклеточных животных, а также и за пределами многоклеточных. Пример такой макромолекулы показан на рисунке. Видно, что это очень сложная структура. Каждая точка – это символ нуклеотида (это малая рибосомная РНК, её модель). Сейчас мы рассмотрим в большем увеличении кусочек этой молекулы, которая подсвечена.

На этом большом плакате в верхней части рисунка собраны самые разные существа. От бактерий до многоклеточных животных, губок и грибневиков, структура молекулы у которых соответствует первому типу. В нижней части этой простынки собраны соответствующие участки, выбранные из многоклеточных животных других типов. По сути, мы можем по этому признаку всё многообразие разделить на две группы.

А.Г. Таким образом получили инструмент, с помощью которого можно выстроить тот самый ряд, о котором вы говорите. Показать кто кому родственник.

В.А. Вот результат построения дерева с использованием молекулярных признаков. На подсвеченном фоне мы видим многоклеточных животных и только их. Но за одним исключением, на котором я остановлюсь. И это свидетельство того, что те способы, которые мы используем, дают разумные результаты.

Мы видим, что всё многообразие живых существ распалось на две группы. Одна показана чёрным, а другая цветным. Многоклеточные животные отчасти попали на чёрный фон – губки и грибневики. Монофилитическую группу вместе с билатерально-симметричными животными составляют книдарии, трихоплакс. И, таким образом, мы можем заключить, что общий предок многоклеточных животных обладал, по крайней мере, тем набором признаков, которые свойственны грибневикам.

Это схема грибневика, желетелого организма довольно сложного строения. У него в отличие от кишечнополостных имеется аборольный чувствующий орган, сложно разветвлённая гастроваскулярная система, снабжённые мускулами щупальца, гонодукты. Открытие ползающих грибневиков в конце XIX века было зоологической сенсацией, потому что их тут же записали в предки билатерально-симметричных животных. Теперь же мы видим, что они не имеют непосредственного отношения к предкам билатерально-симметричных животных. Но сложная структура, свойственная грибневикам, должна быть отнесена, по крайней мере, к общим предкам. К общему предку грибневиков и ветви, которая ведёт в другую сторону, к билатерально-симметричным животным – кнедариям, к трихоплаксу, артенектидам, дециемидам.

А.Г. То есть, получается, что грибневик от общего предка пошёл по привычному нам эволюционному пути прогресса.

В.А. Ну, или, по крайней мере, не испытывал масштабного регресса.

А.Г. Да, а та группа, которую вы описали сейчас, несмотря на то, что предок у них общий, явно регрессировала в процессе эволюции.

В.А. Да, об этом можно говорить вполне определённо.

А.Г. А у этой точки зрения есть противники или против вот этой молекулярно-генетической картины не поспоришь?

В.А. Что касается положения среди многоклеточных животных – трихоплакс, ортонектид и дециемид, то этот вопрос можно считать полностью решённым. Хотя детали топологии дерева продолжают оставаться предметом, который требуют дальнейших исследований.

В.А. Вот на этой картинке мы видим результат работы генов, которые у билатерально-симметричных животных определяют эмбриональное развитие. А именно передне-заднюю ось. И здесь эти гомеотические гены, управляющие эмбриональным развитием, определяющим передний и задний конец, работают у животного, у которого нет ни переднего, ни заднего конца, ни права, ни лева, ни головы, ни кишечника, ни рта, ни органов чувство. И, очевидно, что эти структуры существовали.

А.Г. То есть, они достались от предков, у которых всё это было.

В.А. Они достались от предков, так точно.

А вот изображение иглокожего ксилоплакса, которого не так давно, лет десять назад, обнаружили на топляке, на досках и брёвнах, которые затонули глубоко в море. У этого иглокожего также нет кишечника, нижняя сторона – это мембрана, которой ксилоплакс прижимается к деревяшке и таким образом питается. На самом деле это морская звезда.

Невозможно представить, чтобы отсутствие кишечника у морской звезды было первичным. Точно так мы можем представить и возникновение трихоплакса. Отказавшись от свойственного другим кишечнополостным способа охоты на добычу, он стал собирать крошки со дна, всё шире и шире раскрывая рот. Если ксилоплакс надеется на гуманитарную помощь, которая сверху на дно упадёт, то также и у трихоплакса рот расширился, он проходит по краю тела, а передне-задняя ось оказывается перпендикулярной субстрату. Таким образом, рот проходит по краю тела и нижняя поверхность, нижний эпителий это и есть кишечный эпителий.

Можно следующую картинку. Здесь мы видим простейших, они всегда фигурировали в курсе протозоологии, это миксоспаридии. На нижней части показан плазмодий миксоспаридии. В жаберном лепестке рыб, внутри плазмодия множество ядер, некоторые обособляются, превращаются в спорогенные клетки, а спорогенные клетки образуют споры. Спора – многоклеточная. Больше всего она похожа на шкатулку. Бывают они разной формы и строения. Ну, например, две створки, на каждой створке по стрекательной капсуле, а внутри шкатулки одна двуядерная клетка или две одноядерных. Электронно-микроскопические исследования показали, что клетки споры соединены десмосомами, как это наблюдается в эпителии многоклеточных животных. А здесь показаны фрагменты коллагенного соединения, которое также характерно для многоклеточных животных. Наличие стрекательных капсул давно заставляло некоторых специалистов предполагать, что миксоспаридии родственны кнедариям. Эта очень сложная структура и её независимое возникновение кажется маловероятным. Но до тех пор, пока не были получены данные о молекулах миксоспаридий, это было экзотическим предположением, которое, скорее, могло рассматриваться в качестве казуса. Однако мы видели фрагмент сложной структуры молекулы рибосомной РНК, которая в важном для нас диагностическом участке у миксоспаридий такая же, как и у билатерально-симметричных животных.

А вот эта картинка показывает особую малоизвестную миксоспаридию, которая, в отличие от тех, которых мы видели – паразитов рыб – паразитирует в пресноводных мшанках. Пресноводных мшанок не каждый видел. Это будденброкия, которая сохраняет признаки червеобразного организма.

Можно следующую картинку. Это поперечный срез будденброкии. Видны мышечные ленты, которые у остальных миксоспаридий полностью отсутствуют. Таким образом, мы вынуждены признать, что регресс в случае миксоспаридий привёл не только к потере всех органов, как это мы видели на примере трихоплакса или дециемид, но к тому, что полностью разрушена вся структура многоклеточного организма и возникла организация одноклеточного.

А.Г. То есть, именно данный вид – это некая промежуточная стадия, которая находится на пути регресса, но не регрессировала окончательно в те виды, о которых вы говорили вначале?

В.А. Видимо, это одна из линий регрессивной эволюции. И результат этого регресса здесь наиболее глубокий, потому что утеряны всякие признаки, свойственные многоклеточным животным.

Кроме вот таких крайних случаев, которые мы рассмотрели, видимо, многочисленные случаи регресса в дальнейшей эволюции многоклеточных животных также происходили. И таких примеров, как мы можем тоже заключить из результатов независимого построения деревьев по молекулярным признакам, также там остаётся немало. Один из наиболее ярких – это ксенотурбеллярии. Ксенотурбелла была описана, как один из самых примитивных и просто устроенных представителей многоклеточных животных. В результате анализа молекулярных признаков она была отнесена к моллюскам и совсем недавно описана личинка ксенотурбеллы, которая сложно организована. На левой части рисунка мы видим эту личинку. У личинки есть нога, зачатки жабр. То есть, результат молекулярного анализа, относящего ксенотурбеллу к моллюскам, можно считать достаточно объективным.

А.Г. В данном случае лучше, наверное, говорить – не зачатки жабр, а остатки жабр.

В.А. Да, пожалуй.

А.Г. Простите, я вклинюсь с вопросом. А если экстраполировать возможность регрессивной эволюции на более сложные организмы, в том числе на высшие формы? На приматов, скажем? Тогда уже не таким бредом представляется недавнее заявление о том, что нынешние бесхвостые обезьяны и человек имели общего предка. Только человек пошёл по линии прогресса, а обезьяны по линии регресса. И что у шимпанзе и хомо сапиенса общий предок не на семь миллионов лет назад отстоит, а что он как раз находится где-то между первыми гоминидами и хомо сапиенс. Что эта ветвь, отделившись, пошла разрушаться приблизительно по такому же принципу, о котором вы говорите. Подобную экстраполяцию на высших животных можно делать? Как, по-вашему?

В.А. Я не очень понимаю, как нам сравнить прогрессивность и регрессивность гоминид, потому что может быть многие из тех действий, которые совершают люди по отношению к своим собратьям, это ужасно. И то, что это происходит, можно считать регрессом.

А.Г. В этой связи – я знаю одну научную работу генетика из Новосибирска, который утверждает, основываясь, в первую очередь, не на филогенетическом материале, а, как это ни странно, на единственной вещи, которая отличает нас от животных, то есть на способности к речи. И показывая, каким образом деградировала речь у хомо сапиенс со времён известных нам, от Гомера и до наших дней, он пытается таким образом доказать, что хомо сапиенс сам стоит на пути регресса. И потеря некоторых функций мозговой деятельности, то есть резкое их снижение, говорит о том, что хомо сапиенс как раз регрессирует, а не прогрессирует, как бы мы этого не хотели.

В.А. Идея о том, что эволюция обязательно ведёт к прогрессу, эта благородная идея, как мы видим на этих примерах, не имеет достаточной поддержки. Мы можем видеть, что иногда эволюция приведёт и к регрессу, в том числе не обязательно паразитических, но и свободноживущих животных.

А.Г. Но законы эволюции одни, и поэтому мы можем перекидывать мостик от достаточно всё-таки простых многоклеточных к существам, которых мы, по крайней мере, считаем высшими. В принципе, такой мостик имеет право на существование.

В.А. Для того чтобы сохранить или увеличить, чтобы достичь прогресса, надо не надеяться на то, что эволюция сама вывезет, а затрачивать на это большие усилия. И то, что мы видим в нашем мире, во многих случаях представляет собой откат назад. Очень существенный откат. В старых учебниках, по которым мы ещё учились, была записана критика младогегельянцев в адрес их учителя Гегеля, который прусскую монархию посчитал высшей ступенью в развитии государства, чересчур обобщив вывод о том, что всё сущее разумно. Несомненно, структура трихоплакса, существа, которое потеряло все нервные, мышечные клетки, любые органы, несомненно, она разумна. Она обеспечивает его выживание, его биологический прогресс. Но с точки зрения морфологии это – регресс, причём очень глубокий, и очевидно, что в тех вопросах, которые волнуют людей больше всего, в их жизни, в их социальной жизни, мы также можем встретиться и встретились со случаями регресса, необычайно глубокого и поразительного.

А.Г. Но тут мы с вами вступаем уже на поле битвы социологов и политиков.

В.А. Да, я думаю, что лучше нам оставаться в той области, где я могу привести реальные примеры.

А.Г. Потому что так и до евгеники недалеко. При почти полном отсутствии естественного отбора, по крайней мере, при снижении его давления на сегодняшнее человечество, на хомо сапиенс, очень многие умы на протяжении XX века задумывались об искусственном отборе, но, смотрите, к чему это привело.

В.А. Я думаю, что этого пугала евгеники, может быть, не стоит бояться – генетический груз реально существует, но эти процессы очень медленные. Да, мы должны о них знать и научиться бороться с наследственными болезнями. Это будет сделано.

Но гораздо больнее для нас не длительное накопление генетического груза, которое будет происходить в течение миллионов или десятков миллионов лет, а то, что у очень многих людей с возрастом в результате мутаций возникает раковая опухоль. И мы должны научиться преодолевать такие генетические дефекты уже сейчас.

Библиотека\Александр Гордон\Регресс в эволюции многоклеточных
Hosted by uCoz