Библиотека\Александр Гордон\Фотосинтез и флуоресценция |
Участник:
Рубин Андрей Борисович – член-корреспондент РАН
Александр Гордон: …зелёные насаждения, леса – мы дышим тем кислородом, который они вырабатывают, но два уважаемых химика сделали одно замечание. Они сказали, что если рассматривать период вегетации растения, то это похоже на правду. Но ведь растение не только живёт, оно ещё и умирает – умирают его листья, умирают плоды. И после гибели они связывают достаточно большое количество кислорода, потому что гниют. И таким образом, говорят они, баланс выделяемого кислорода растениями и поглощаемого кислорода сводит к нулю их деятельность в период вегетации. Как вы прокомментируете эту точку зрения?
Андрей Рубин: Для того чтобы точно на это ответить, надо действительно подвести чёткий баланс. Я думаю, что, может быть, если говорить о судьбе одного растения, которое живёт и выделяет, потом гниёт и потребляет, здесь действительно, пожалуй, могут быть сравнимые вещи. Но в целом, в глобальном масштабе на Земле, конечно, весь кислород, которым мы дышим сейчас, в геологическое время нашего существования, он весь происходит из растений. Это, я думаю, не подлежит сомнению. Другое дело и принципиальное достижение, в том числе и наше отечественное, что весь кислород, который получается в ходе фотосинтеза, он из воды. Вот это сейчас не оспаривается. Но, по-видимому, есть другие источники. Однако здесь речь пойдёт о механизмах фотосинтеза.
А.Г. Раз мы говорим с вами о таком феномене как фотосинтез – он для меня до сих пор непостижимым. Каким образом произошло так, что свет стал источником питания и жизни всего существующего сегодня на Земле? Ведь были же и другие эпохи.
А.Р. Вопрос очень серьёзный и принципиальный. Я бы даже, может быть, в качестве введения что ли, сказал несколько слов.
При всем эволюционном различии положений разных организмов, начиная от амёбы до человека, между ними существует колоссальная разница. Биохимические основы, кирпичики живого – аминокислоты, нуклеотиды, всё то, что нам даёт биохимия, в общем, одинаковы. Вот это принципиальная была трудность в понимании эволюционного развития. Почему усложняется организация без усложнения отдельных составных кирпичиков? Ответ на этот вопрос был дан и был дан экспериментально, как ни странно. Когда было показано, что можно взять неорганические соединения – воду, CO-2, аммиак, поместить их, скажем, в кварцевую пробирку, облучить ультрафиолетом, провести электрический разряд, пропустить ещё что-нибудь, дать энергию и в настоящее время нет вообще никаких препятствий к получению любых кирпичиков живого. Даже сложные сахара получаются, нуклеотиды отдельные. Это, возвращаясь к вашему вопросу, о том, что на заре эволюции, в основном, не исключительно, но в основном за счёт энергии света, ультрафиолета, был осуществлён, как мы говорим, абиогенный синтез вот этих кирпичиков живого.
Возникшая жизнь питалась всеми этими готовыми веществами. Она была деторатрофна, и всё было хорошо и прекрасно до тех пор, пока всё не съели, грубо говоря. Дальше что делать? Либо умирать, либо тратить новые источники энергии. И тогда возник фотосинтез. И я, когда будут картинки, покажу, какие особенности механизма фотосинтеза были связаны с этим. Но если говорить о роли света, то свет второй раз пришёл на помощь. То есть, за счёт энергии света, я буду об этом говорить, возбуждения электронного, получается фотосинтез. И продукты фотосинтеза – это сахара, углеводы, различные другие вещества, то, чем, собственно, мы питаемся и едим.
Первый рисунок показывает схематично, как фотосинтез идёт в листе. На самом деле, процесс состоит из отдельных этапов. Вдумайтесь в это. Каждый этап отличается по характерным временам на много порядков. Растение за счёт фотосинтеза живёт и развивается дни, годы, в зависимости от того, какое растение. АП начальный этап – аминоэнергия света – происходит за время, вдумайтесь, порядка десять в минус двенадцатой, сейчас даже говорят в десять в минус пятнадцатой секунды. Физиков не удивишь такими короткими временами, удивительно то, что это происходит в биологической системе и уже на этом коротком промежутке времени возникают биологически осмысленные процессы. То есть, это не просто некая физика, которая скрыта от всякой биологии. Я постараюсь показать, насколько это всё завязано в целом.
Итак, десять в минус двенадцатой секунды, и получаются продукты фотосинтеза: фиксация СО2, восстановление СО2, появление сахаров, углеводов, ну и дальше, так сказать, пошло и поехало. Идёт рост растения. Так вот секрет фотосинтеза, как процесса запасания энергии света (в этом отличного от других биохимических процессов) заключается на этих самых ранних этапах. И я постараюсь показать, как это получается, почему это важно не только для фотосинтеза, но и вообще для современного понимания того, что происходит в биологических белковых машинах. И потом постараюсь показать, как это можно применить на практике, буквально с сегодняшнего дня, даже в городском хозяйстве, например.
А.Г. Фотосинтетические батареи?
А.Р. Это один из этапов. Диагностика с помощью фотосинтеза состояния атмосферы, воды. Я буквально два слова сказал бы вот о чём. Биология – наука 21-го века. Мы сейчас будем жить в постгеномную эру. Мы расшифровали геном человека. Мы, я так понимаю, это наука в целом. Американцы в основном, как вы знаете. Что дальше? Дальше получается так, что теперь жизнь клетки – это жизнь отдельных белковых машин. И здесь произошло принципиальное понимание того, что мы не можем двигаться дальше, не понимая принципов работы этих машин. А для того чтобы понять принципы работы машин, машин в кавычки пока можно взять, это значит, что мы должны не только понимать результат начальный и конечный. Мы должны понимать, что происходит внутри.
Вот тривиальный пример: можно выбрать машину, допустим, по прочности, по скорости, по расходу бензина. Этого вам достаточно, чтобы сделать выбор, но вы ещё не можете понять, что происходит внутри. Почему одна лучше другой? Вы не поймёте это, если вы не понимаете, что там происходит внутри. Вот мы сейчас на этом этапе. Протеномика – наука о функциональности, функционировании белков, как составной части клетки, всё это связано с проникновением внутрь машины. И работы по фотосинтезу реакционных центров ведутся уже давно. Слава Богу, уже много десятков лет насчитывает история фотосинтеза. Поэтому, как мне кажется, работа фотосинтеза выходит за рамки чисто фотосинтетических интересов. Здесь можно влезть внутрь.
Давайте следующий рисунок покажем. Вот, что происходит. Поглощается квант света, есть реакционные центры, энергия возбуждения. Дальше используется при фотосинтезе синтез органических веществ. Так вот форма использования энергии света – это организация электронного потока. Это значит, что вроде как запускают за счёт энергии света поток электронов. И это происходит очень быстро. Возвращаясь к вашему вопросу, который вы задали вначале – как свет пришёл на помощь второй раз. Оказалось что хлорофилл, ароматические соединения были уже давно синтезированы, ими пользовались. Но дальше необходимо было обеспечить поглощение света, возбуждение электронное и использование энергии света в фотосинтезе. Так вот, если вы возьмёте хлорофилл, выделите в раствор, дадите ему электронное возбуждение, он поглотит квант света, и через пять на десять в минус девятой секунды энергия будет либо излучена в виде флуоресценции, либо дисипирует тепло. Так или иначе, за пять в десять минус девятой секунды энергия будет потеряна полностью. Если вы хлорофилл поместите в лист и захотите использовать эту энергию с большой эффективностью, то это нужно делать намного скорее, чем в естественное время, за которое пройдёт естественная потеря энергии. Вот почему начальный этап фотосинтеза – разделение зарядов, отрыв электрона, который потом добежит до СО2 – это девять в минус двенадцатой, минус тринадцатой секунды.
А.Г. То есть, надо успеть.
А.Р. Надо успеть, потому что иначе всё у вас, так сказать, оторвут. А дальше необходимо что сделать? Побежал электрон быстро, но дальше ведь его должны подхватить ферментные системы, которые, слава Богу, в эволюции уже существовали. Они работают намного медленнее. Времена у них десять в минус второй, в минус третьей секунды. И эти десять порядков надо замедлить. Вот почему электронный поток осуществляется через много промежуточных стадий.
На следующем рисунке показан этот электронный поток. Вот поглотился квант света – для энергии, для эмиграции энергии. Я не буду о подробностях здесь говорить. Идёт через ряд переносчиков, пластохинон мигрирует с одной стороны мембраны на другую. Здесь ситохромный комплекс. Затем ещё одна фотосистема. И выброс электрона, который уходит на надфасфат и восстанавливает его. По дороге образуется трансмембранный потенциал. Водород переносится с одной стороны мембраны на другую, получается разность потенциалов, такая электрическая батарейка заряжается. И она используется на синтез АТФ, который, как мы все хорошо знаем, это энергетическая валюта и используется во всех процессах жизнедеятельности.
Так вот в кинетическом смысле это замедление электрона до времён респектабельных, почтённых, до миллисекунды, чтобы можно было нормально использовать этот электрон. И секрет фотосинтеза вот здесь находится. И в основном это есть белковая машина. Машина по переработке энергии электронного возбуждения. Из светособирающей матрицы доставлена энергия и далее идёт переработка её в энергию разделённых зарядов. Здесь две проблемы – отрыв электрона и как этот электрон переносится на большие расстояния. Ведь толщина мембраны, примерно, 50-100 эмгстрем. И он переносится за очень короткие времена. Вот на следующем рисунке мы сейчас заглянем внутрь этого электронного центра.
Вот, посмотрите, белок. Семь альфа-спиральных столбов. Внутри эти переносчики, черненьким обозначены. А вот как бежит электрон от одного переносчика к другому, идёт перенос электрона. Достаточно большие этапы. А бежит он очень быстро. Вопрос – как это происходит, за счёт чего он происходит быстро. Обычно в химии растворов как решается вопрос? Ударения молекул, преодоление барьера, перенос электронов, и очистительные, восстановительные реакции. Здесь все переносчики погружены в белок. Они не бегают, никакой энергии активации в обычном смысле слова нет. Поэтому начальные этапы происходят быстро, и нужно понять механизм за счёт чего это происходит.
И это был принципиальный этап в понимании механизма. Оказалось, что эти процессы очень быстрые. Причём, происходит не просто какая-то диссипация энергии, а идут направленные какие-то изменения, микроконформационные. И дальше было показано, что идёт так называемый туннельный перенос электрона при низких температурах. Экспериментально оказалось, что этот перенос электрона идёт здесь при температурах минус сто градусов Цельсия. При температурах жидкого азота, даже жидкого гелия. Что принципиально? Что идёт он, в общем, с эффективностями принципиально сравнимыми с таковыми, которые наблюдаются при комнатных температурах. И, причём, ещё раз говорю, это не какая-то экзотика, которая идёт только при азотных температурах. Этот барьерный туннельный перенос происходит при всех температурах. При комнатных температурах в организованных системах он идёт даже с большей эффективностью, чем надбарьерный перенос в конденсированных системах.
А.Г. Это же квантовый эффект?
А.Р. Да. Совершенно верно. Это туннельный эффект физики, физика очень хорошо знает туннельный эффект. И здесь он происходит. Причём, идея в чём. Вот происходит туннелирование электронов из начального состояния в другое, а дальше он же может назад вернуться. А эффективность фотосинтеза начальных этапов – сто процентов. Практически сто процентов, для того, чтобы он не вернулся. За время пребывания в конечном состоянии часть энергии теряется. И за время десять в минус двенадцатой секунды он поэтому не успевает вернуться назад. И бежит дальше, ему легче в этом смысле идти дальше, чем вернуться назад. Но принципиальным является следующее. Когда приходит электрон, он не только фиксируется. Это же большая глобула, я вам показывал большой белок. Она вся претерпевает изменения вслед за приходом электрона. Вот здесь показано это схематически. Вот донор, вот аксептер. Вот у них конформация. Вот произошло туннелирование электрона. И после этого конформация начинает меняться. У донора она опять возвращается в исходное положение, чтобы принять откуда-то электрон. А у аксептера, взявшего электрон, она опять меняется, чтобы передать его дальше. Это экспериментально можно проверить. Можно поймать. Но я пока скажу, как можно себе представить аналогию. Вот, представьте себе, в цирке два акробата прыгают с одной трапеции на другую. Трапеция – это белок информационного изменения, спонтанный. А акробаты, значит, электронные. И когда эти трапеции в результате, в данном случае, свободной воли его помощника, приближаются на короткое расстояние, так, чтобы барьер для туннирования был небольшой, происходит туннирование. Акробат прыгает, хватается. Он хватается, фиксируя себя, теряя часть энергии в трении. Это потеря части энергии электрона по колебательной.
А у акробатов – трение. Проверка жестокая, намажьте лапти подсолнечным маслом, вы увидите, что получится. Но после того как он себя зафиксировал, что дальше? Характер движения трапеции меняется. Он начинает себя раскачивать. А здесь что получается? Здесь его свободная воля, так сказать, он хочет. Ему ещё тут помогают. А в туннелировании ему так устроена конформация, что новое равновесное состояние получается в осмысленной конфигурации, что достигается для облегчения дальнейшего переноса электрона. И экспериментально это можно поймать. Вот, следующий рисунок показывает, как это можно сделать. Вы запускаете систему и можете её замораживать. Можно сделать так. Вначале заморозить в темноте, а потом запустить электрон и посмотреть, как он будет там в ней гулять туда-сюда. А можно сделать по-другому. Можно начать освещать систему, она будет оживлена уже, и по дороге её замораживать. И тогда вы в зависимости от скорости замораживания, понижения температуры, от интенсивности света, то есть от числа ударов, можете поймать разные состояния. И получите, что при одной и той же конечной температуре она у вас будет в разном состоянии и в разной конформации. И это экспериментально наблюдается действительно.
Кинетически можно показать, какая будет разная кинетика. Вот здесь экспериментальные данные. Я не хочу подробно аргументировать всё это дело. Тут разная кинетика будет, но были сделаны опыты, которые показали, что действительно, структура взаимного расположения переносчиков… Опять не вдаюсь в подробности, если будет интересно, могу сказать. Мне кажется, важен смысл. На следующем рисунке я могу показать это схематически. Человечки имитируют перенос электрона. Вы их заморозили в темноте в таком положении, и они кидают электроны туда-сюда с такого положения. А теперь вы начинаете освещать и одновременно замораживать. И в зависимости от скорости освещения они взяли электрон и бегут с ним, а вы их ловите в разных местах. И вот тут-то они начинают уже играть по-другому, поскольку они попали в разные места, застыли в разных местах на пути своего естественного движения. Как биофизики у нас говорят, это принцип электронно-конформационных взаимодействий. И он не является чем-то специфическим для фотосинтеза. Вот на следующем рисунке, гемоглобин. Известно, он переносит кислород в крови. Как он работает?
У него есть четыре большие субъединицы и один атом железа, скажем, который получается так. Вы присоединяете кислород к атому железа. Атом железа вдвигается в ароматическую периферийную плоскость. Но что получается дальше? Это даёт начало каскаду конформационных изменений, в результате которых каждая последующая субъединица аксигинируется с энергией активации, меньшей чем предыдущая. Корпоративное такое изменение. Что это такое, в чём принцип, почему это движущая сила?
Когда вы присоединили кислород, железо даже не поменяло эквивалентность. Но это новое электронное состояние, которое требует новой конформации. И это просто сила физического принципа поиска минимума энергии, система спонтанна, никто её не толкает. Она спонтанно ищет новый минимум энергии и находит его на пути последовательной аксигинации субъединиц. Вот, кстати, один из принципов машинного поведения. Это использование физического принципа. Здесь нет новых физических принципов. Система их использует. Иногда видоизменяет до полной неузнаваемости. То есть, они остаются. Нарушения законов физики нет, это понятно. Но они используются. Секрет состоит не в принципах, а в том, как они используются.
Кто их придумал – понятно. Либо Бог, либо природа, что в данном случае одно и то же. И наша задача – понять, что там внутри происходит. Но гемоглобин – это классический пример такого машинного поведения, который давным-давно известен. И то, что я рассказал, является одним из хороших примеров, который иллюстрирует принцип электронно-конформационных взаимодействий, как основы функционирования макромолекулы. И сейчас дальнейшая задача – расшифровать всё это дело. Я могу упомянуть многие другие, казалось бы, далёкие от фотосинтеза, молекулярные машины. Например, бактерию радопсина, это фермент зрительный. Атефаза. Это всё вещи, казалось бы, разные. Каналы, которые в мембранах пропускают йоны. Это всё одни и те же идеи. Идеи, которые связаны с тем, что идёт изменение электронного состояния. Толчок, меняется равновесие конформационное. Оно дальше начинает изменяться спонтанно, в поисках своего минимума. Это физический принцип. А это всё имеет осмысленный характер, но на молекулярном уровне. Я бы даже не стал кавычки перед словом «осмысленный» здесь ставить.
А.Г. Скорее, это целесообразность.
А.Р. Целесообразность. Но, понимаете, мы не привыкли говорить об осмысленности, о целесообразности на уровне одной молекулы. Но вот на уровне макромолекулы, видимо, можно так говорить.
А.Г. Но физики – особенно в квантовой механике – говорят ведь о «свободе воли электрона».
А.Р. Я думаю, там немножко другое имеется в виду. Я не физик-теоретик, поэтому осторожно буду говорить. С одной стороны, осторожно, с другой стороны – об области, о которой слышал, но мало знаешь, можно свободно говорить. Так часто бывает. Но я тут осторожно бы о свободе воли говорил. Во всяком случае, это похоже на экскурс в область того, как взглядом люди отклоняют электрон. Ну, есть много в жизни чудес, но друг Гораций… И что там на самом деле – Бог его знает. Но в данном случае, принцип такой вполне конкретно иллюстрируется.
Сейчас речь идёт о том, чтобы с помощью методов ядерного, магнитного резонанса, других методов расшифровать эти механизмы. В случае гемоглобина это всё очень хорошо биохимики уже сделали. Но в других молекулярных машинах расшифровать конкретные движения, понять механизм движения ещё не удалось. В фотосинтезе движение различается, как я уже говорил, в пределах одной макромолекулы. От десять минус в двенадцатой, до десять во второй секунд. Это колоссальный, принципиальный вызов молекулярной физике. Она, конечно, решит этот вопрос, вместе с биологами это будет сделано.
Но в оставшееся время я хотел бы вам, если можно, рассказать о том, как это можно применить в практике. Что это даёт, вообще говоря, просто конкретно. Я несколько слов скажу. Это сложная, в общем, система – фотосинитическая. Достаточно сложная. Она не такая уж сложная, как все клетки, но достаточно сложная для процессов моделирования. И возникает вопрос, а можно ли понять, как эти начальные процессы вообще регулируются – как-то со стороны всей клетки или нет? И по каким показателям можно об этом судить. Здесь сразу речь идёт о сложных системах.
Сейчас мы, пользуясь мощью современных компьютеров, стоим на пути того, что можно смоделировать поведение всей клетки. Но в данном случае, я буду говорить о поведении фотосинитической системы. И здесь встаёт целый ряд принципиальных вопросов регуляции сложной системы. Мы знаем принцип узкого места. Правильный принцип, но я бы сказал, упрощённый. В сложной системе много узких мест.
В фотосинтезе есть какой-то показатель, по которому можно судить о системе в целом. Показатель такой. Вот рисунок.
Флуоресценция – это та часть энергии, которая не используется в фотосинтезе. И мы можем, изучая характер флуоресценции (как она меняется при начале работы фотосинтеза) судить о том, сколько энергии запасается в фотосинтезе. Чем больше мы получаем флуоресценции, тем меньше идёт на фотосинтез. Выход флуоресценции, будем так говорить, порядка одного процента. То есть, по одному проценту нам предлагается судить о том, что делалось с остальными 99-ю. Это примерно то же самое, как если бы из любопытства мы хотели бы узнать, скажем, какой бюджет у соседей, а они вас не пускают домой, чтобы вы увидели, что они там едят. Но вы можете лазить в их мусорное ведро и смотреть, сколько бутылок они выкинули или ещё чего-нибудь. А потом пересчитать все те основные продукты, которые они при этом потребляют.
Вот в таком положении мы в отношении природы. Она со своего стола кидает нам флуоресценцию и говорит: «Догадайтесь, чего я там делаю в основном за столом». Так вот, начиная с фотосинтеза, вначале не удаётся всё переработать. Электроны восстанавливают промежуточные переносчики, здесь флуоресценция большая. Потом постепенно начинает раскачиваться система. И флуоресценция уменьшается. По разности между максимальной флуоресценцией, когда все центры закрыты, и обычной, при небольшом освещении, мы можем судить о потенциальной эффективности работы фотосинтеза. И оказывается, что это можно использовать в двух отношениях.
Во-первых, существуют различные фотосинитические системы. Есть листья, фитоплантон, который в океане, и очень важно определить эффективность фотосинтеза. Для фитоплантона, для рыболовного хозяйства это вообще очень важно. Рыба пойдёт туда, где есть чем питаться, где фитоплантон. Это очень важно. А с другой стороны, хлорофилл, который сидит в мембране, как я уже говорил, он очень чувствителен к всевозможным антропогенным загрязнениям – гербициды, ещё что-нибудь, что проникает в клетку. И когда в клетку они проникают, они меняют состояние мембран, а, как следствие, меняется флуоресценция хлорофилла. Как правило, она портится – в том числе и состояние хлорофилла, а флуоресценция увеличивается.
А.Г. Запасается меньше.
А.Р. Да, совершенно верно. И это можно использовать. С одной стороны, разность между максимальной и нулевой флуоресценцией есть показатель эффективности работы фотосинтетического аппарата. И можно в автоматическом режиме измерять эту интенсивность флуоресценции в морях и океанах. Я покажу некоторые примеры, и что это даёт. А с другой стороны, можно посмотреть, как это регулируется всей клеткой. И потом этот показатель можно использовать, для того чтобы посмотреть – всё ли в порядке в фотосинитической системе? И как следствие, а всё ли в порядке в окружающей среде, поскольку растения, фитоплантон, они чувствуют, что происходит вокруг и могут быть просто индикатором состояния. Вот у нас на кафедре мы ведём уже давно большие работы. Вообще всё, что я рассказываю – это результат работы, в основном, моей кафедры, конечно, но и большого количества сотрудников. Я просто не могу перечислить все фамилии моих друзей и коллег сейчас. Но поскольку я не научный доклад делаю, я думаю это позволительно.
А.Г. Они вас делегировали.
А.Р. В общем, я думаю, они проверят, правильно ли я здесь всё говорю.
Так вот, на следующем рисунке я вам покажу один пример. Вот корабль и маленький аппаратик здесь показан, который мы опускаем в воду и можем в автоматическом режиме измерять интенсивность процесса фотосинтеза начальных этапов и смотреть, что там происходит. Я вот такой вопрос, допустим, задам. Что будет, если мы будем освещать клетку фитоплантонную, но заставим её голодать при этом? Не дадим ей фосфора, азота. Ответ правильный, казалось бы, такой. Будут происходить первичные процессы, будет происходить разделение зарядов, при этом будут накапливаться АТФ, но роста не будет – потому что не из чего строить тело. Но подождёт клетка хороших времён, когда у нас появится фосфор, азот, но не всё же время она будет голодать. И тогда эта АТФ будет использована, клетка будет расти. Это логически правильный ответ, но не верный.
Потому что в клетке существует огромная опасность. А именно. Если у нас есть избыток электронов и избыток энергии электронного возбуждения, не использованные в данный момент времени, то кислород, который везде находится, в том числе, кстати, выделяется при фотосинтезе, как побочный продукт фотосинтеза, будет активироваться, и восстановленный кислород или возбуждённый кислород будет вызывать разрушение мембран.
Кстати, все эти разговоры на счёт озонной дыры – это, видимо, была, так сказать, хорошо проведённая дезинформация, для того чтобы хладагенты заменить. Но само по себе это физически обосновано. Озон, который экранирует от проникания ультрафиолета, мешает активации кислорода. Если вы будете слишком много загорать, у вас появится рак кожи, у вас будет выцветание фотодинамических красителей. Это то, что угрожает самой клетке. Я бы здесь провёл сравнение с недоброй памяти Чернобыльской АЭС. Потому что там тоже скорость выделения энергии в процессе реакции оказалась большей, чем скорость замедления, и произошёл взрыв.
Здесь то же самое. Надо не дать возможности активировать кислород. Как это клетка делает? Это колоссальный пример. Следующий рисунок, пожалуйста. Если кислород активируется, то происходит разрушение клетки. Понятно, чем это всем нам грозит. Так вот, оказывается, клетка делает следующее, когда слишком много света, а она голодная. Она электрон на самых ранних этапах направляет назад за очень короткое время. Время меньшее, чем время, нужное для активирования кислорода. И это происходит не только в лабораторных условиях, а прямо в природе. Вот посмотрите. Эти наблюдения проводились в Средиземноморье, но у нас в Подмосковье то же самое происходит. В восемь утра солнца мало и пищи вполне достаточно. В этом смысле они голодают. Пища соизмерима с количеством квантов. Я очень грубо говорю, но понятно.
А.Г. Пропорция верная.
А.Р. Не слишком много квантов, не захлёбывается она. И интенсивность фотосинтеза большая. А вот поднимается солнце, 12 часов дня, интенсивность фотосинтеза падает и становится минимальной. Что значит падает? Электрон обращается назад. Это сопровождается увеличенным свечением – не дать кислороду схватить эту энергию, не разрушить клетку. А потом, когда солнце заходит, опять все возвращается назад. Вот и у нас то же самое. Можно на следующем рисунке это увидеть. Вот посмотрите, Можайское водохранилище. Ну, не Адриатическое море, но свои прелести здесь тоже есть. На глубине одного метра в десять часов утра интенсивность фотосинтеза максимальная. Не так уж много солнца у нас в Подмосковье в десять часов утра. Но когда в два часа дня интенсивность солнца уже достаточно большая и на глубине одного метра его слишком много – вот тут интенсивность фотосинтеза упала. А на глубине двух метров она как раз стала максимальной. То есть, они активно это регулируют.
Я тут не позволю себе вдаваться в механизмы, но чтобы остаться, так сказать, в рамках жанра, скажу, что здесь идёт восстановление пластахинона, о котором я говорил. Только эти научные слова произнесу, глубже не буду вдаваться. За счёт того, что появляется большой отрицательный заряд на пластахиноне, за счёт ликростатического отталкивания электроны не успевают, им не дают возможности уйти в цепь, кислород не успевает активироваться за это время. Это что касается активность фотосинтеза. Теперь как использовать эти показатели для того, чтобы определить степень антропогенного загрязнения.
Можно просто измерять эту интенсивность фотосинтеза начальных этапов по переменной флуоресценции, измерять в режиме реального времени, в реальных условиях. Я вам покажу несколько примеров, которые интересны. Это мы делаем на нашей кафедре. Мы заключили договор с мэрией Москвы и провели обследование различных деревьев. Результаты я вам потом покажу. С нашим шариком мы проехали на трамвайчике по Москва-реке. Что мы получили. Вот посмотрите. 40 километров мы проехали по Москва-реке. Растёт количество водорослей в Москва-реке по мере продвижения в городскую черту. Почему? Вообще, они живут, так сказать, и процветают там. А вот интенсивность фотосинтеза остаётся приблизительно постоянной. Их много, но все они себя чувствуют неплохо. Но вот в некоторых местах, а именно, в устье Яузы, и в устьи ещё одной реки… Не помню, не могу разобрать…
А.Г. Завод имени Лихачёва и Южный порт. Самые экологические неприятные места.
А.Р. Да, да, да. Вот посмотрите, что мы видим. Резкое уменьшение интенсивности фотосинтеза. Мы мэрии предлагали сделать всё бесплатно, дайте нам трамвайчик, мы проедем по Москва-реке и покажем, где неучтённые вами сбросы вод. В режиме реального времени. Но – это к вопросу о востребованности науки – дальше платонических разговоров дело не пошло.
А.Г. Но данные же вы получили всё-таки.
А.Р. Ну, одно дело эти данные. Другое дело, что с ними делать. Мы большое беспокойство вызываем. Спокойнее гораздо знать то, что есть и не знать ничего больше. Я думаю, тут понятно, что я хочу сказать. Не хочу кидать ни в чей огород камешки, но мы можем это сделать. Пока не получилось.
Другая проблема есть. Скажем, проблема цветения водорослей, забивка труб сточных, ещё чего-то такое. Это очень важный момент. Вот на озере Байкал важно предсказать время цветения. На озере Байкал активное цветение начинается, примерно, где-то в конце февраля и идёт в марте. Ну, это известно. А вот, посмотрите, как идёт интенсивность фотосинтеза на начальных этапах. Она начинает подниматься за два-три месяца до цветения. Они начинают готовиться. Представьте себе, насколько это важно знать в данном конкретном водоёме или в какой-нибудь системе, где идёт, возможно, загрязнение – знать и заранее всё это предсказать. Насколько это важно.
Вот переменные флуоресценции уже на городских лесонасаждениях. Ну, мы знаем, что в Москве гибнут десятки тысяч деревьев. Причём, как они гибнут? Оно стоит, стоит, потом оно, так сказать, довольно резко гибнет. И потом начинается постфактум – выяснение. А почему у нас здесь было вредное место, ещё чего-то такое. Вот мы прошли улицу Марии Ульяновой и измерили эту переменную флуоресценцию. У нас есть небольшое ноу-хау, как можно мерить переменную флуоресценцию не только на листьях, но и на коре. Это зимой даже можно сделать, когда никаких листьев нет. Это так вот, маленький секрет. И вот красным обозначены опасные места, они совпадают либо с автобусной остановкой, либо с каким-то местом, где было какое-то строительство, либо где автобусы дизели свои не выключали, вот что-то в таком духе. И можно же провести сканирование. Более того, при планировании, скажем, фасадов каких-то можно с точностью до одного-двух метров показать безопасное расстояние для лесонасаждений.
А.Г. Кроме того, выбрать, наверное, и породы деревьев, которые будут устойчивы.
А.Р. Абсолютно точно. Представляете, какая проблема. Вы дорогие какие-то саженцы привезли, да ещё они откуда-нибудь с юга. И вы не знаете, какие приживутся тут, в наших условиях. А мы по этой величине в зависимости от температурного воздействия их можем отобрать. Причём, с большой точностью, в слепых опытах мы это делали.
С мичуринцами у нас договор был. Мы дали им соответствующий прибор, маленькую такую прищепочку, как мы её называем, спектроскопическую, с помощью которой они могут определить зимостойкость яблоневых саженцев. И они это используют активно, это очень хорошая вещь. Ещё один пример я вам покажу. Вот, допустим, антропогенное загрязнение – соли тяжёлых металлов. Вообще проблема питьевой воды – известная вещь. Бывает же ситуация такая, когда по химическим анализам всё хорошо, а в целом сочетание вредное. Ну и обратная картина.
А.Г. Кроме того, динамические характеристики важны. Сейчас всё хорошо, а через две минуты всё плохо.
А.Р. Конечно, конечно. По частям всё вроде хорошо, а общее впечатление отвратительное. Как в известном анекдоте о впечатлении делегации по поводу завода. «И то хорошо, и это хорошо, а общее впечатление – отвратительное».
Итак, здесь водоём с разной концентрацией йонов меди. Они небольшие в том смысле, что количество клеток – зелёная линия – не меняется. То есть, никто ещё не гибнет, всё хорошо. А по переменной флуоресценции уже идёт падение. Это идёт отравление. За много дней до того, как произошло падение клетки. Это есть экспресс-диагностика, которую можно использовать. Поэтому я сейчас пользуюсь тем, что мы с вами говорим, и мы это продолжение повторяем. Мы готовы это сделать, мы готовы обучить персонал. Это не простые измерения, это не на весах взвесить. Это более сложная вещь. Мы готовы, мы работаем в университете, это наши обязанности. Нам это интересно. И это можно сделать. Растения стоят на перекрёстке дорог и никуда не бегут. Это естественные часовые. Фитапланктон в Москве-реке живёт, и он показывает, что там происходит. И это нужно использовать. И это не наша только выдумка, весь мир перешёл на спектральный метод автоматического мониторинга в режиме реального времени. Ну, и, хоть здесь, может, мы не отстанем. Я уж не знаю.
И последний пример я хотел бы привести такой. Вы знаете о проблеме экологически чистых источников энергии – водород. Уже автомобили на водородном топливе показывают. Откуда брать его? Я думаю, что перспективны будут, конечно, химические дешёвые системы. Биологические тоже не сбрасываются со счёта. Водоросли выделяют водород. Кстати говоря, некоторые водоросли его выделяют, когда начинают голодать, когда им некуда девать электроны. И для того чтобы они не достались кислороду, специальный фермент гидрогинеза передаёт ион водороду. Выделяется молекулярный водород. И, как побочный кислород, молекулярный водород. В культиваторах важно определить время, когда это начинается.
И здесь показано, что начало выделения водорода совпадает (мы недавно это открыли в совместных работах с американцами) с резким падением фотосинтеза. За десять – пятнадцать минут, а времена здесь – часы. Десять, двадцать, сорок часов. За пятнадцать минут резкое падение фотосинтеза, как предварительная такая подготовка. Они показывают – сейчас будем выделять водород. Резко уменьшаем фотосинтез, и будем электроны на водород отдавать.
Заключая, я бы сказал так. Если вернуться опять к проблеме сложных систем, то мы ведём, уже начали работу по моделированию этой системы в целом. Мы знаем, как она устроена. Мы знаем, какие там константы, из экспериментов знаем. В этих условиях методика математического моделирования сложных больших моделей очень перспективна. Потому что то, что мы определим путём подбора констант, с большой вероятностью можно считать, что это соответствует реальным системам. Это эвристическая ценность моделирования, когда вы можете теоретически узнать то, что или трудно экспериментально узнать, или в голову даже не приходит. Это достаточно ценная вещь.
Но в принципе, оказывается, что одна из основных трудностей состоит в том, что мы привыкли считать, что константы неизменны. А вот то, что мы здесь видели, показывает, что возвращение части электронного потока, как ответ на реакцию, означает, что меняется узкое место. Изменяются константы. И я хотел бы это проиллюстрировать немножко несколько фривольным что ли рисунком.
Все бегут на лекцию в Московский университет с пересадкой в метро. А в метро узкое место – это эскалатор. Что это значит? Сколько бы вы поездов не добавляли сюда, если вы не увеличите скорость движения по эскалатору, у вас скорость вообще не увеличится. Вот так регулируется эта система. Хотите увеличить скорость прибытия на лекцию, увеличьте число эскалаторов. Это обычный принцип узкого места. И ещё здесь есть сигнал обратной связи. То, что здесь узкое место, передаётся на вход и говорят: не теряйте время, займитесь чем-то ещё. Идёт изменение топографии системы. Вот в чём трудность моделирования больших систем. Они вроде как стационарные, но константы там могут меняться и, в принципе, на любом этапе. Ну, не на любом, конечно. Но вот здесь показано, куда они бегут. Побежали в библиотеку чего-то читать. В кино тоже – неплохо. Могут бизнесом заняться – тогда конец науке. Потому что в бизнес из науки есть путь, а из бизнеса в науку я чего-то примеров конструктивного возвращения не знаю. Но будем надеяться, что сила и образования нашего, и традиций научных такова, что нам ещё не скоро удастся похоронить науку, несмотря на все недобрые усилия.
А.Г. А сколько времени пройдёт от создания компьютерной модели той сложно действующей системы до попыток синтезирования такой системы? И вообще возможно ли это или это фантастика?
А.Р. Вы знаете, эта проблема сейчас встала. Я могу вам сказать, что у нас на кафедре есть опыт моделирования. Вообще у нас в стране, надо сказать, сильная школа математического моделирования. У нас на кафедре есть небольшая группа, ещё сильная группа в Пущино есть, в физическом институте. Так что с мозгами у нас всё в порядке всегда было. И сейчас там с компьютерами тоже неплохо. Но я вам скажу так. Я думаю, что в целом смоделировать клетку, – до этого ещё, конечно, далековато. И здесь даже не в том дело, что компьютерной мощи может не хватить, а в том, что мы ещё не всё знаем. Слишком большой произвол будет. Если вы посмотрите на карту клеточного метаболизма, голова кругом идёт, конечно. Это нереально. Нереально потому, что мы ещё далеко не все константы знаем и не всё знаем. Но отдельные блоки, функционально осмысленные и биологически имеющие значение – конечно, пришла пора это делать. Вот мы сейчас займёмся фотосинетическим моделированием, есть и другие проекты. И я думаю, года через два-три мы получим реальные результаты.
Библиотека\Александр Гордон\Фотосинтез и флуоресценция |